
3646 

Since eQ(Y) approaches e j ' 2 ' as Q moves along p toward 
T and since EQ approaches zero as SQ approaches zero 
along any path it follows that the hypercircle C can be as­
signed a sufficiently small but nonzero radius that 

k ( 2 > - e T
( 2 , | < V 2 | e T

( 2 ) ! (A6) 
for all Q on p that lie inside C, and such that 

k l < V2IV
2I (A7) 

for any point within C whether it lies on p or not. 
Now let X be a point on the line joining A to B. We wish 

to show that 

Ex - ET < 0 (A8) 

for all X. Since ex ( 2 ) ^ £ A ( 2 ) it follows that 

Ex - Er < (eA
( 2 ) + e x ) s x

2 < {eT
l 2 ) + 

k t 2 ) - V 2 ) | + IVIsx2 (A9) 
The desired result (A8) follows from (A9) after the intro­
duction of the inequalities (A6) and (A7). This completes 
the argument. 
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The collisional excitation of vibrations in a polyatomic 
molecule by an external atom is an extremely complex 
problem. The quantitative transition probabilities into the 
different sublevels of the various vibrational modes of the 
molecule depend on a vast number of factors:2 (a) static 
factors such as the intermolecular potential function, and 
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the nature of the different normal modes of the molecule; 
(b) dynamic factors such as the collision energy, the impact 
parameter, and deflection angles. Inclusion, in accurate 
classical, semiclassical, or quantal calculations, of all these 
parameters, allows for estimates of vibrational excitation 
probabilities through numerical calculations.3 The com­
plexity of the phenomenon, and therefore of the calculations 
required to describe it accurately, has clouded till now the 
insight into eventual laws which might govern its qualitative 
behavior. Our purpose has been to seek such laws, even at 
the cost of drastic but hopefully not unduly restrictive ap­
proximations. We feel that such laws should be particularly 
useful to organic chemists in their patient probing of the 
overall mechanism of chemical reactions. 

In this paper we show how the relative vibrational excita­
tion of the different modes of XY2 (linear or bent) and X3 
triangular molecules depends on the angle of approach of 
the atomic collider. 

1. A Static Approach to the External Forces Acting on the 
Vibrations of a Polyatomic Molecule 

Our model is based on the following simplifying assump­
tions. 

(1) The colliding atom is directed toward the center of 
gravity of the molecule (zero impact parameter and purely 
backward scattering). We therefore arbitrarily select, 
throughout this work, a specific family of collisions. 

(2) No rotational excitation obtains in the collision. The 
angle of approach <f> between the axis of approach and an 
axis related to the molecular framework is frozen once and 
for all at its initial value. This assumption should be reason­
ably valid for the interaction of a light collider with a heavy 
target molecule. 

The first two assumptions reduce the ordinary dynamical 
treatment of the trajectory of the colliding atom, which 
would normally involve a time-dependent function <$>(t), to a 
static treatment in which 0 is a constant parameter. 

(3) The intermolecular potential V is assumed to be a 
sum of central-force potentials between the impinging atom 
and each atom of the target molecule. 

(4) Initially the target molecule is assumed to be in its 
vibrational ground state. Furthermore, throughout this 
work, the intramolecular distortions of the target molecule 
will be expressed in terms of unperturbed normal displace­
ments. 

Let us label the atoms of the target molecule A, B, C, D, 
etc. Let G be the position of the center of mass of the mole­
cule. Finally M is the impinging atom. In a coordinate sys­
tem with G as origin we label the Cartesian coordinates of 
A (*A. .VA, 2 A ) , those of B (XB, ys, ^B) , etc., and those of M 
(*M, )>M, ZM)- The intermolecular potential V can be writ­
ten 

V= VA(pA) + VB(pB) + . . . (1) 

where PA is the distance between A and M, PB that between 
B and M, etc. The interatomic potential VA is specific to 
the pair interaction between atoms A and M. Of course it 
depends on both M and A. Finally the normal modes of the 
target molecule are labelled Q], Qi, Qi, etc. 

The force acting on the nuclei in the ith normal mode is 

F1 = -dV/BQi (2) 

Since each component of V depends only on one internu-
clear distance 

SQ1 ~ dpA BQ1 dpB 8Q ;
 + • • • 

In terms of the Cartesian coordinates defining the position 
of atoms A and M 

Figure 1. General coordinate system for attack of M on linear CAB. 
Coordinates in parentheses refer to the center of gravity. 

PA = [UA - xuf + (yA - >>M)2 + (Z11 - zuf}
in (4) 

Whence 

9 Q , - " p A r A *M,8Q< (Vk ^BQt + 

Since x\, y\, and z\ are also the Cartesian components of 
the vector r\ — G-A linking the center of mass to atom A, 
and (XA — xu), (JA — >"M), and (ZA — ZM) are the compo­
nents of the vector M-A = PA, we have finally 

where VA is the first derivative d^A/dpA of the interatomic 
potential VA- In compact notation we have the general ex­
pression for the force acting on the normal coordinate Qi, 

Fi = - E V V S; (7) 
all atoms ^-* 

N 
In (7) UN is a unit vector on the axis (PN) linking the collid­
ing atom M to an atom N of the target molecule. In the ap­
proximation below, both vectors in (7) are evaluated at the 
equilibrium configuration of the molecule. 

Equation 7, which will be used henceforth, shows that the 
only information required for calculating the external forc­
es is: (1) the form of the interatomic potentials KN; (2) the 
position of the collider M relative to the atoms A, B, C , . . . , 
which determines the direction of the unit vectors UN; (3) 
the vectors dr^/dQj (N = A, B, . . .) whose components 
(dxs/dQi, ay^i/dQj, dz^/dQi) depend solely on the manner 
in which the Cartesian coordinates of the atoms vary with 
the normal coordinates. The form of such vectors is well 
known for all polyatomic molecules with simple symmetry, 
and can be identified with the arrows in the drawings of 
molecular normal modes by Herzberg.4 

2. The Linear Symmetric Triatomic Molecule XY2 

Figure 1 shows the coordinate system for an atom collid­
ing with a symmetric linear triatomic molecule CAB in 
which the masses of B and C are equal, and for which the 
center of mass G is identical with A at equilibrium. We call 
R the distance between M and the center of gravity G (here 
R happens to be equal to PA) and / the equilibrium distance 
G-B = G-C. Since M is aimed at G, the distortions of in­
terest are limited to the (x, y) plane. The position of M is 
uniquely defined by the pair of parameters R and 0. 

The normal modes Q\, Q2, and Q^, with the correspond­
ing Cartesian displacements, are recalled in Figure 2.4 

These Cartesian displacements define the components of 
3TAISQU ^B/'dQi, and src/sQi (i = 1, 2, 3) which are also 
shown in the figure. At the same time the components, at 
equilibrium, of the vectors UA, UB, and uc are respectively 

Jean, Chapuisat, Salem / Vibrational Excitation in Polyatomic Molecules 



3648 

^ 1 . * £ . 
d O : ( J Q , 

< J Q , " Il 

dx 

dof" 
dx^ 

0,=symmetric stretch Q2« t-ehdin^ Q3 = ontisymmetric stretch 

Figure 2. Normal coordinates of a symmetric linear triatomic mole­
cule. The changes in Cartesian coordinates are given explicitly. 

C A B 

(+=0°) 

Figure 3. Forces induced by M in the triatomic molecule at 0 and 90° 
(curly arrows indicate strong interactions). 

-R COS 0 

-R sin cp 
U1 

jl - R cos 0 

PB 
-R sin 0 

-I - R cos 0 
i Pc" 
) -R sin 0 

. Pc 

(8) 

PA V P B 

It is then a simple matter to calculate the scalar products in 
eq 7 and the three forces 

VJ \ I VJ VJ 
- ° - 1 + R COS 0 - 1 ^ - -!-C-

V PB PC 
I K ' / F„ 

> t e ) " - ' ( ^ 
+ 

PB PC 

F2(0) = i? sin 
LV-Pt \ P B P C / . 

(9) 

F3U) = i (Za.'_ Z ^ 
V P B P C / 

+ 
c . 

i? COS ' .1X4 . ' - /Ia.' + Zc'Y 
.V PA V PB Pc A 

In these formulas the dependence of the forces on 0 occurs 
both explicitly and implicitly via PA, PB, and pc which are 
themselves functions of 0 and /?, 

PA = R 

p B = R(I - 2e cos 0 + e 2 ) I / 2 e = J/jj (10) 

p c = R(I + 2e cos 0 + c 2 ) 1 / 2 

Equations 9 and 10 yield the exact forces acting on each 
normal mode, within our initial assumptions. 

The qualitative behavior of these forces obtains immedi­
ately from eq 9. Let us make the reasonable assumption 
that at the distance of closest approach the potentials VA, 
VB, and VQ are all repulsive potentials, described by rapidly 
varying (for instance, exponential) functions of distance. 
Hence, for the limiting values 0 = 0 and 90° the dominant 
term in Fi, Fi, and F% is determined respectively by V-g,' 
and by VJ, i.e., the potential involving the atom closest to 
the collider. Thus 

F1(O") 
P B 

+ > 

(R - I) < 0; 

F1OO0) * -I (^ 
\ PB 

force 
stretching mode must vanish for a certain angle 0i between 

0 (11) Zc 
JB Pc 

It is clear from (11) that the force Fi on the symmetric 
: ' ) 

10o20o30o40°56?60o70o80o90Ol(> 

F 
5 

U 

3 

2 

1 

0 

-1 

-2 

- 3 

- A 

- 5 

- 6 

- 7 

- 8 

- 9 

Figure 4. Variation of the forces on the normal coordinates Q], Qi, and 
Qi, as a function of impact angle <j>.6 

0 and 90°. For this angle there will be no excitation of the 
vi vibration whatever the strength of the collision. A simple 
explanation for this result is as follows (Figure 3). For 0 = 
0°, atom B is compressed toward A by the incoming collider 
and Q\ is excited with negative amplitude (opposite to the 
arrows in Figure 2). For 0 = 90°, atoms B and C are both 
repelled, with a force component pushing them away from 
each other; Q] is excited with positive amplitude. At some 
intermediate angle Q] is not excited at all. 

In a similar manner Fi, which of course vanishes for 0 = 
0°, behaves as 

F 2 (0 
VJ 

-(PR-*- > 0; 
P B 

F(90°) « £L R V, 

M PA 
< 0 (12) 

Hence the force F2 acting on the bending mode vanishes, 
not only trivially for a collinear attack, but also for a cer­
tain angle 02 between 0 and 90°. The reader will easily find 
a rationalization of this result similar to the previous one; V2 
(as drawn in Figure 2) is excited with positive amplitude for 
small values of 0 but with negative amplitude at 90°. 

Finally F3, which vanishes for 0 = 90°, behaves as5 

F3(0°) * -^-(R - I) > 0; 
P B 

F 3 (0 — 90°) w -(I - 0^ ^L < 0 (13) 

The force F3 acting on the antisymmetric stretching mode 
vanishes both at 90° and also at a certain angle 03 between 
0 and 90°. 

Our main result is that for each vibrational mode there 
exists at least one "blind" angle for which the vibrational 
excitation vanishes. Figure 4 shows the accurate variation 
of the forces with impact angle 0, These curves correspond 
to an assumed common potential 

Vk Vn = Vr £ Re' a - 5 A" 
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2 * 
I V/ / 

GA.GB.GCr 

Figure 5. General coordinate system for attack of M on triangular 
ABC. 

! * do, "2 do, do; Sr +& ' do S 
1 d»c 

' 2 "doS 

>£-& Sf-5Mi- dye V a . £>c 
do{ 2 ' " d o 

Figure 6. Normal coordinates of an equilateral symmetric triangular 
molecule. The changes in Cartesian coordinates are given explicitly. 

a collision energy Ec such that K/E = 104 (see Appendix 
II), / = 1.2 A, and M = 0.375 (viz., CO2). The blind angles 
are then 

Ci)1 = 57.5° 

4>2 = 64° (and 0°) (14) 

Cb3 = 52° (and 90°) 

for Q1 and F 1 

for Q2 and F 2 

for Q3 and F 3 

In (14) the "trivial" blind angle values are given in paren­
theses. 

3. The Equilateral Symmetric Triatomic Molecule X3 

We now turn to the approach of an atom M to the center 
of gravity of an equilateral symmetric triangular molecule 
ABC. The approach is characterized by the distance R be­
tween M and the center of gravity G, and by two polar an­
gles 6 and <p which specify the orientation of the vector 
G-M (Figure 5). Also G-A = G-B = G-C = r. 

The three normal modes are shown in Figure 6.4 One, 
Qi, is the totally symmetric A\' mode, while Q-? and £?2b 

are a pair of degenerate components of a E' stretching 
mode. The figure also shows the Cartesian displacements in 
these modes. The components at equilibrium of the unit 
vectors pointing from M to A, B, or C are respectively 

- R cos 9 cos ip 

PA 

r — R cos 6 sin <p 

P A 

-R sin 6 

rV3/2 - R cos B cos d 

P B 

- r / 2 - R cos 6 sin <p 

PB 

-R sin 6 

R cos 6 cos <p 

Pc 

u c ( - r / 2 - R cos 6 sin <p (15) 
Pc 

-R sin 

The scalar products U N - ( W N / ^ , - ) of eq 7 follow immediate­
ly and yield the forces as follows 

(YJL 
VPA 

R cos B 

. YJL 
PB 

iisin < 
Pc ') 

JY*L _ I(LL 
( P A 2 \ P B 

R cos 6 } Sln *{'£ 

L-(LL. 
V p 8 

V3 

T cos 

V P B 

Z 
Pc ;')}• 

V PB PC / -

Pc 
VS 

cos 

F 2
6 = r 

2 V PB PC 

V3 

) 

(YJ1L - LL] 
V PB Pc I 

~V3 /VJ V~'\ 
R cos 6 -1— s in cM-!-B- - -iC- ) + 

L 2 V p B p c I 

L-(YJL+ YSL)X] ( 1 6 ) 

V P B P C / J - J i c o s n 2 ^ 
Again the dependence on 0 and 0 occurs both explicitly and 
implicitly via the distances p\, PB, and pc-

Equation 16 for the forces induced on the three normal 
modes of a symmetric triangular molecule (A = B = C) 
allows us to obtain immediately the behavior for certain 
limiting cases, 

(a) For an approach to G perpendicular to the molecular 
plane 

B = 7T/2, 

~ (YJL 
VPA 

F 2
a = 0 , 

<$> = 

+ ^ L 
P B 

JV 

YsL) 
Pc) 

0 (17) 

Only Q\ is excited. The two degenerate modes are unaffect­
ed. Indeed such an attack can only "expand" the molecule 
as a whole. Since V\ = VB = Vc' at this particular ap­
proach, unsymmetrical distortions cannot be excited. 

(b) For an in-plane approach toward an atom A, with 
whom the interaction potential dominates relative to the 
two others 

V. 
(R - r ) ; F2

1 

- 77/2) 

-CR - r) F 2* = 0 (18) 

(6 = 0, 0 

Z A 
PA " ' PA 

In this approximation, the symmetric mode and one compo­
nent of the degenerate mode are excited equally. Inclusion 
of KB' and Vc' would of course distinguish between F] and 
F2*. 

(c) For an in-plane approach toward a bond BC, with 
which the two interaction potentials dominate relative to 
the third one 

(0 = 0, (p=- TT/2) 

P c . 

'Vn' . Vr. 

(LL 
V P B 

• • " ( J 

i'Xh-* 
t')(l*-*'); (19) 

Again only Q\ and Q-f are excited. However, the degener­
ate stretching mode is much more strongly excited than the 
symmetric stretching mode. Indeed the approaching atom 
repels B and C roughly in directions perpendicular to the 
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M 

Figure 7. Forces induced by IvI in the triangular molecule for an in-
plane attack toward a bond. (Curly arrows indicate strong interac­
tions.) 

bonds BA and CA. Under these conditions Q\ is hardly ex­
cited, while Q2* is strongly impulsed with a large negative 
amplitude (Figure 7). 

Of course selective excitation, in the last two processes, of 
F2* rather than F2

0 is just a simple consequence of our ar­
bitrary choosing attack along the y axis. The situation is re­
versed for two other values of 4> between —7r/2 and ir/2. 
For an in-plane attack at other <f> angles both Q2* and Q2

h 

will be excited. 
Let us now turn to the qualitative behavior of the forces 

as the angles 8 and 4> vary, and first to the variation with 
azimuthal angle 4> for an in-plane attack (8 = 0). The re­
sults are shown in Figure 8. The force Fi on the symmetric 
mode oscillates, with periodicity 2TT/3, between a maximum 
value (eq 18) and a minimum value (eq 19). At its maxi­
mum Fi is negative. The sign of Fj at its minimum depends 
on the sign of ((R/2) — r); except for relatively strong colli­
sions this factor should be positive; whatever the case the 
force Fi comes very close to vanishing at — ir/2, 7r/6, etc. 
(Figure 8). 

The forces F2* and F2
b on the two degenerate modes os­

cillate with a periodicity 2TT. However, the correct periodici­
ty for the energy transfer to any mode, as determined by the 
symmetry of the molecule, must be 2ir/3. Indeed it is possi­
ble, for each angle <t>, to construct combinations of Q2* and 

O' = -cos 2 * 0 / + sin 2 6Q7* 
^2 ^ 2 (20) 

Q" = -sin 2cf>Q2
a - cos 26Q2" 

such that Q' and Q" have the proper symmetry of the prob­
lem. Therefore in Figure 8 we also plot the forces 

F' = -cos 2^F2
1 + sin 2<£>F,b 

2 (21) 
F" = -sin 20F2

 a - cos 20F2" 
These forces have the proper periodicity 2ir/3. 

The other interesting behavior is the manner in which ex­
citation varies with polar angle 8 for an atom M arriving 
toward an apex (0 = 7r/2) or toward a bond ((p = —ir/2). 
We need only consider Fi and F2* since by symmetry F2

0 

vanishes. The limiting values of F] and F2* are respectively 
those given by eq 17 for 8 = x/2 and by eq 18 and 19 for 6 
= 0. The force on the symmetric mode is positive at 90° but 
negative at 0°, whether for attack on an atom or for attack 
on a bond (in the latter case, we assume {R/2) — r) > 0). 
Hence Fi has a blind angle for approach to an apex atom, 
and also a blind angle for approach to the center of a bond. 
We can expect the dead angle #iA for the apex attack to be 
larger (around 60°) than that ^iBC = 30-40° for the attack 
on a bond, since in the latter case the limiting value Fi (6 = 
0°) is very close to zero. The value of #iBC should also be 

Figure 8. Variation of the forces acting on the normal coordinates Qh 
Q', and Q", as a function of azimuthal angle <j> for an in-plane attack. 

subject to large fluctuations due to the uncertainty on (R/2) 
— r. 

Finally the force F2* on the E' mode vanishes for perpen­
dicular attack and is negative for in-plane attack, both for <j> 
= 7r/2 and for (j> = —x/2. Since the value 8 = T/2 does not 
correspond to any special symmetrical situation for Q2* (see 
Figure 6; the xz is is not a plane of symmetry) this zero 
value for F2* must be the boundary of a positive region. 
Hence there should be an additional, nontrivial, blind angle, 
not far from the vertical approach, for excitation of Q2*, 
corresponding to the second boundary of the positive region. 
Whether this blind angle occurs on the side of atomic attack 
(</> = ir/2) or the side of bond attack (</> = —rr/2) will de­
pend on the values of the numerical parameters. 

These results are confirmed in Figure 9, which shows the 
variation of Fi and F2* with 8. For the numerical parame­
ters of section 2 and r = 0.9, the blind angle for F2 occurs 
for apex attack 

92
A = 64° (and B2 = TT/2) 

while the two blind angles for Fi are respectively 

et
A = 62° 

et
BC = 34° 

4. Consequences for Energy Transfer and Comparison with 
Experiment 

We now attempt to investigate the possible physically ob­
servable consequences of the force curves and blind angles. 
A full numerical calculation of translation-to-vibration 
(T-V) energy transfer probabilities would be unrealistic in 
the framework of the assumptions of section 1. Since our 
emphasis has been on the orientational dependence of the 
force field, the most immediate consequence of our results 
will appear in the so-called "steric factor".1 This steric fac­
tor arises in the expression for the T-V energy transfer 

AE{8, &) oc j f f[R(t), 9, <p] exp{iu>t) dt\2 (22) 

in which f(t) is a normalized force whose maximum value is 
unity. The averaging of AF over all angles requires an inte-
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gration over angles which, when done separately, yields a 
number called the steric factor. For the collision of an atom 
with a molecule this factor is given by 

bond ( < p s - -S-) 

sf = J-JJF(B, <$>)2 sin 6 66 dcp 
477 

(23) 

where F(8, <t>) is the normalized value of the force. The tra­
ditional approach to the calculation of sf has been to as­
sume a monotonic trigonometric angular dependence of the 
force F on the angles 8 and cj>. For the collision of an atom 
with a linear triatomic, this leads to steric factors 

Sf(V1) = V3, Si(U2) = %, Bf(V3) = V3 

where V2 is the single in-plane excitable bending mode. 
We have applied eq 23 using the correct forces calculated 

in this paper (eq 9). The steric factors can be obtained by 
integration of the force curves of Figure 4. The calculated 
values are 

sfd/,) = 0.091, Sf(^2) = 0.186, sf(i/3) = 0.133 

Two important conclusions emerge from these numbers, (a) 
The steric factors are all approximately three times smaller 
than previously assumed. This is of course due to the blind 
angles and corresponding zero values in the force curves, 
(b) The ratio of the steric factor for i>2 and v\ remains very 
close to 2, but the steric factor for ^3 is now roughly three-
halves that for V]. 

The predicted difference in the steric factors for v\ and vy 
should result in an observable difference in excitation 
probabilities, or conversely relaxation times, for very fast 
collisions (e""r « 1) at high energies (no coupling of T-V 
transfer with translation-to-rotation (T-R) transfer). The 
experimental situation for the relaxation of linear triatom-
ics, with particular emphasis on CO2, in the presence of 
rare gases, is still undecided. Measurements with different 
experimental techniques are widely at variance.2,s However, 
Taylor and Bitterman8 conclude that "although the ques­
tion is not completely closed, the sum total of all the experi­
mental evidence indicates that from 300 to 60000K the vi­
bration relaxation of modes v\ plus vi and jz3 of CO2 are the 
same to within a factor of 2". 

At present, therefore, direct comparison of our theory 
with experiments on CO2 is hampered by these experimen­
tal uncertainties. Furthermore it should be noticed that the 
observed phenomena for CO2 include two effects which we 
have not accounted for in our model: (a) the very fast vibra­
tional energy exchange between v\ and vi',9 (b) the intramo­
lecular vibrational relaxation and excitation. As more ex­
perimental results become available for other triatomic 
molecules, in which the first effect need not be present, it 
will be possible to test our prediction of higher excitability 
of i*3 than izi. 

5. Discussion 

We will not return to the crucial assumptions which were 
developed in the first section. Several other implicit as­
sumptions, which may have escaped the reader, should be 
mentioned. 

The primordial role ascribed to the center of gravity G of 
the target molecule, rather than to that of the ensemble tar­
get plus M, is coherent with the assumption of frozen im­
pact angles. Both assumptions imply that M is light relative 
to the mass of the target molecule. 

The calculated forces are purely functions of three-di­
mensional coordinates (R, 8, 4>); they have been derived 
without any symmetry restriction. However, if one were to 
use the fundamental eq 7, 9, or 16 to calculate actual vibra­
tional energy transfers, the constraint of fixed orientation 

Figure 9. Variation of the forces acting on the normal coordinates Q\ 
and Qi* as a function of polar angle 6 for an out-of-plane attack. Left-
hand side indicates attack toward atom A, right-hand side indicates at­
tack toward bond BC. 
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Figure 10. Normal coordinates of a symmetric nonlinear triatomic 
molecule. The changes in cartesian coordinates are given explicitly. 

(8, 4>) for the relative motion would constitute a severe re­
striction requiring further discussion. 

Rigorously the force acting on a given normal mode de­
pends not only on (R, 8, <j>) but on the actual amplitude of 
the various @,'s. Here these amplitudes have been assumed 
to be sufficiently small, as caused by collisions at thermal 
energies, so as to have only higher order effects on the cal­
culated forces. 

In spite of the stringent limits which are imposed on our 
model, we feel that some insight has been gained as to the 
detailed, orientational behavior of vibrational excitation 
from the ground state for a few very simple systems. We 
have shown that excitation of any of the three vibrational 
modes of a symmetric linear triatomic molecule involves a 
nontrivial blind angle. For collision with an equilateral sym­
metric triangular molecule there are two blind angles for 
excitation of the A' mode, and one nontrivial blind angle for 
excitation of the E' mode. As we have seen, the observable 
consequences of these blind angles should eventually be ver­
ifiable by experimental investigation. 
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Appendix I 

Both particular types of molecules above (linear AB2 
(D^h) and triangular A3 (D^h)) can be considered as limit­
ing cases of the more general nonlinear AB2 molecule 
(C2v). By making use of the same coordinates R, 8, and <j> 
as in Figure 5 and the notations defined in Figure 10 for the 
normal modes, the final expressions for the forces are the 
following. 
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= J T ^ COB q COB ( a - P1) + (V^ + V1A 
( PA MU + M) V PB P C / 

(sin a sin (a - P1) + . cos a cos (a - Ŝ1)) > + 

(Y 1 v ' V ' V '\ 
R cos 6 <--^ - 1^ - -^2- sin 0 cos (a - /S1) + 

= f j ^ COB a Bin (a - p , ) _ (V^ + V^\ 
(pA /i(l + IJ.) V PB P C / 

(24) 

(sin a cos (a - /32) - -j—T c o s a sin (a - P2)Jj- + 

i? cos 6> l(—¥±- - ¥*- ^ ) sin 0 sin (a - /32) -
(VM PA PB PC / 

f—2 C- J cos 0 cos (a - P2)J-

* - < { ( £ - ^ - - H h ; «-••)}• 
f/i v ' v ' v '\ 

R cos 6 < ( *- B- C- I cos 0 sin a + 
(VM PA PB PC ' 

/ZB' VC'\ . ^ \ 
( —°- — -^- 1 sin <6 cos a { 
V PB Pc / > The angles /3i and fo >n Figure 10 and eq 22, whose 

values depend on the nature of the atoms A and B and the 
valence force constants, are obtainable from standard ex­
pressions in normal mode theory (cf. ref 4, eq II, p 193). It 
is readily verified that eq 22 simplify to eq 9 and 16 through 
respectively 

a = 90°, P1 = P2 = O, 0 = 0 (in-plane attack) 
and 

a = 30°, P1 = -30°, P2 = 0, M = |> I = r/3 

Appendix II 

The numerical curves showing the variation of the forces 
with angle of approach are obtained as follows. In all the 
numerical applications of the present article, the potential 
describing the interaction between the atoms in the mole­

cule and the impinging atom M is taken as a unique expo­
nential function 

FN(pN) = tfexp(-apN), (N = A, B, . . . ) 

where 

a = 5 A"1 

Let us consider the case of the linear AB2 molecule (cf. 
eq 9). The approximate model discussed in the first section 
allows us to write 

Scon = [V A + Vr (25) 

where £coii is the collision energy and R is the distance of 
closest approach. For a given angle of approach 0, it is pos­
sible to obtain R numerically as a solution of eq 25, for an 
arbitrarily chosen value of Econ. Only the ratio K/Eco\i is 
physically significant; K/Eco\\ - 104 is used throughout the 
article and corresponds to a weak collision energy. Thus it 
becomes possible to calculate the forces F, (;' = 1, 2, 3), at 
the distance of closest approach, as functions of 0, since 
i?(0) was obtained previously and the other quantities in 
(9) are either molecular constants (/, n) or simple functions 
of R such as PA, PB, PC, J-V, VB, and VQ'. 
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